Search results for "ultracold molecules"

showing 3 items of 3 documents

Formation de molécules dans des gaz atomiques ultra-froids par des champs quasi-résonnants

2010

We study the nonlinear mean-field dynamics of diatomic molecule formation at coherent photo- and magneto-association of ultracold atoms focusing on the case when the system is initially in the all-atomic state. We show that in the limit of strongly nonlinear interaction between an ultra-cold atomic-molecular system and a quasi-resonant electromagnetic field, the molecule formation process, depending on the characteristics of the associating field, may evolve according two different scenarios, namely, weak- and strong-oscillatory regimes. In the first case the number of molecules increases without pronounced oscillations of atom-molecule populations, while in the second case high-amplitude R…

Photo-associationBEC of moleculesRésonance de Feshbach[PHYS.COND.CM-GEN] Physics [physics]/Condensed Matter [cond-mat]/Other [cond-mat.other][PHYS.COND.CM-GEN]Physics [physics]/Condensed Matter [cond-mat]/Other [cond-mat.other]Ultracold moleculesMolécules ultra froides[ PHYS.COND.CM-GEN ] Physics [physics]/Condensed Matter [cond-mat]/Other [cond-mat.other]Feshbach resonanceCBE moléculaireMagneto-associationPhotoassociation
researchProduct

Roadmap on STIRAP applications

2019

STIRAP (stimulated Raman adiabatic passage) is a powerful laser-based method, usually involving two photons, for efficient and selective transfer of populations between quantum states. A particularly interesting feature is the fact that the coupling between the initial and the final quantum states is via an intermediate state, even though the lifetime of the latter can be much shorter than the interaction time with the laser radiation. Nevertheless, spontaneous emission from the intermediate state is prevented by quantum interference. Maintaining the coherence between the initial and final state throughout the transfer process is crucial. STIRAP was initially developed with applications in …

PhotonAtomic Physics (physics.atom-ph)Digital storageStimulated Raman adiabatic passage02 engineering and technologyStimulated Raman adiabatic passage (STIRAP)01 natural scienceslaw.inventionPhysics - Atomic PhysicsFTIR SPECTROSCOPYstimulated Raman adiabatic passage (STIRAP)lawStereochemistryRare earthsStatistical physicsMetal ionsmolecular Rydberg statesQCparity violationPhysicseducation.field_of_studyQuantum PhysicsElectric dipole momentsCoherent population transfer021001 nanoscience & nanotechnologyCondensed Matter Physicsacoustic waves; molecular Rydberg states; nuclear coherent population transfer; parity violation; spin waves; stimulated Raman adiabatic passage (STIRAP); ultracold moleculesADIABATIC PASSAGEAtomic and Molecular Physics and OpticsChemical DynamicsMolecular beamsVIOLATING ENERGY DIFFERENCEResearch group A. Pálffy – Division C. H. KeitelStimulated emission0210 nano-technologyCoherence (physics)Experimental parametersPopulationFOS: Physical sciencesacoustic waves530spin wavesMolecular Rydberg statesELECTROMAGNETICALLY INDUCED TRANSPARENCYSINGLE PHOTONSQuantum statePhysics - Chemical Physics0103 physical sciencesUltracold moleculesSpontaneous emissionddc:530Nuclear coherent population transfer010306 general physicseducationStimulated Raman adiabatic passageChemical Physics (physics.chem-ph)Rare-earth-ion doped crystalsPhotonsQuantum opticsnuclear coherent population transferBROAD-BANDControlled manipulationsPOLAR-MOLECULESMoleculesRydberg statesLaserSuperconducting quantum circuitAcoustic wavesParity violationstimulated Raman adiabatic passage (STIRAP); ultracold molecules; parity violation; spin waves; acoustic waves; molecular Rydberg states; nuclear coherent population transferDewey Decimal Classification::500 | Naturwissenschaften::530 | Physikultracold moleculesQuantum Physics (quant-ph)QUANTUM GASSpin waves
researchProduct

FORMATION OF MOLECULES IN ULTRACOLD ATOMIC GASES VIA QUASI-RESONANT FIELDS

2010

we study the nonlinear mean-field dynamics of diatomic molecule formation at coherent photo- and magneto-association of ultracold atoms focusing on the case when the system is initially in the all-atomic state. We show that in the limit of strongly nonlinear interaction between an ultra-cold atomic-molecular system and a quasi-resonant electromagnetic field, the molecule formation process, depending on the characteristics of the associating field, may evolve according two different scenarios, namely, weak- and strong-oscillatory regimes. In the first case the number of molecules increases without pronounced oscillations of atom-molecule populations, while in the second case high-amplitude R…

résonance de Feshbach[PHYS.PHYS]Physics [physics]/Physics [physics][PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph]magnéto-associationmolécules ultra froidesFeshbach resonancephoto-association[PHYS.MPHY] Physics [physics]/Mathematical Physics [math-ph][ PHYS.PHYS ] Physics [physics]/Physics [physics]CBE moléculaire.[PHYS.PHYS] Physics [physics]/Physics [physics]BEC of molecules.[ PHYS.MPHY ] Physics [physics]/Mathematical Physics [math-ph]photoassociationultracold molecules
researchProduct